ABSTRACT

Aim Some of the main challenges in immediate implant placement are the lack of remaining bone for anchorage and socket decontamination in cases of teeth extracted due to infection. The objective of this case series is to describe a surgical technique that is also capable of maintaining bone architecture after extraction, while promoting the decontamination of the area and use the maximum potential of bone cells regenerative capacity.

Case report Three cases were followed for periods ranging from 5 months to 5 years. An early implantation technique was used on all cases, with a waiting period of 21 days after tooth-extraction. This allows the implant placement on a new formed bone granulation tissue, rich in growth factors and osteoprogenitor cells.

Results This approach allowed sites decontamination, formation of vital bone contacting the implant surface, primary stability, good three-dimensional positioning, and satisfactory prosthetic outcomes in all cases.

Conclusions Implant placement on bone granulation tissue is a viable technique and should be considered as an option during treatment planning.

INTRODUCTION

Currently, the use of endosseous implants for the rehabilitation of partially or totally edentulous subjects is well established in the literature (1). Several studies on surgical techniques, type of implants and repair process indicate prediction of the possible limitations and complications of each case (2-6). The technique of immediate implant placement has been increasingly investigated and used (1, 7, 8), since it provides more comfort to the patient and restricts bone resorption after extraction (9). However, its accomplishment demands greater operator skill, considering the need of implant placement in areas of compromised remaining bone due to the presence of an extraction socket. Thus, the primary stability may be impaired, with inadequate three-dimensional positioning for prosthetic rehabilitation (10). The ability of socket decontamination may also inhibit the immediate implant placement in cases of teeth extracted due to infection (11). There is a gap in the literature concerning the surgical techniques that may overcome these limitations of immediate implant placement and simultaneously keep its advantages regarding the dimensional maintenance of the tooth socket. Therefore, this paper describes a case series of implant placement in bone granulation tissue, which allowed maintenance of tissue originality, significantly reduced the surgical bias of inadequate implant positioning, and benefited from the maximum regenerative capacity of bone cells.

CASE REPORTS

Case 1
A 50-year-old male patient, systemically healthy, presented with complaint of pain due to endodontic abscess with a grade III furcation lesion in the mandibular left second molar, originated from a pulp chamber perforation (Fig. 1A).

After extraction, the tooth socket was curetted to eliminate the granulation tissue and bone spiculae, and
FIG. 1 Initial radiographic image showing furcation involvement (A). Alveolus immediately after tooth extraction and removal of granulation tissue (B). Positioning of a bovine cortical membrane (GenDerm®, Baumer, Mogi Mirim, São Paulo, Brazil) to prevent soft tissue migration within the alveolar socket (C). Sutures (D).

FIG. 2 Radiographic image after 21 days, indicating the presence of newly forming bone on the alveolar socket (A). Flap elevation and membrane removal, revealing the bone granulation tissue inside the alveolar socket (B). Placement of a 4.1-mm diameter and 13 mm long implant, in close contact with the bone granulation tissue (C). Sutures (D).
Bone granulation tissue and implant dentistry

Case 2
A systemically healthy 68-year-old male patient was diagnosed with acute marginal periodontal disease. His oral status with intense bone loss demanded extraction of the mandibular right first molar (Fig. 4). Since it was not possible to check the adequate decontamination of the region infected by periodontopathogens and filled with purulent secretion from a periodontal abscess, immediate implant placement was not indicated. Therefore, the tooth was extracted and the same steps described in case 1 for implant placement in bone granulation tissue were followed (Fig. 5, 6). After 21 days, the region was reopened for placement of an external hex implant with double acid-etched surface (Strong®, SIN, São Paulo, Brazil), with 4.1-mm diameter and 13 mm length. The radiographic image indicated the presence of a still friable soft tissue on the alveolar socket, evidencing presence of newly forming bone (Fig. 2A). However, elevation of the flap was not more difficult than in mucogingival surgeries, and mature bone tissue was observed underlying the granulation tissue (Fig. 2B). Thus, the implant could be safely stabilized with a torque of 32 N/cm (Fig. 2C). The flap was sutured (Fig. 2D) and postoperative medication was prescribed according to the same protocol of the first intervention.

After six months, clinical evaluation of the area revealed healthy peri-implant tissue, besides peri-implant sulcus and attached mucosa (Fig. 3A). Radiographic images inticated implant osseointegration and no bone loss (Fig. 3B). Then, the patient received a screwed implant-supported denture with an UCLA castable abutment with Cr-Co base. At a two-year follow-up, it can be observed the maintained peri-implant health (Fig. 3C).

Case 3
A 77-year-old male patient with significant systemic conditions searched for treatment due to periodontal involvement of the mandibular right second premolar and first molar. Clinical evaluation revealed need of extraction of these teeth, followed by rehabilitation with implants. As for case 2, due to the local bacterial contamination,
immediate implant placement was contraindicated, and the technique of implant placement in bone granulation tissue was selected. The clinical management followed the protocol described in case 1. Prosthetic rehabilitation was performed 6 months after implant placement (Fig. 8A). After 4 months, due to a crown fracture, a new crown was made (Fig. 8B). The case was followed during 5 years (Fig. 8C).

Clinical outcomes

The cases were followed for periods ranging from 12 months to 5 years. The outcomes obtained on longitudinal follow-up revealed the relatively easy accomplishment
of the technique, absolute decontamination of the area, formation of vital bone contacting the implant surface, primary stability and complete osseointegration in the expected period, with good three-dimensional positioning, satisfactory prosthetic outcomes, and predictable restorative esthetics.

DISCUSSION

This paper describes an adaptation of the bone graft technique in area of newly forming bone or bone granulation tissue (12, 13) in implantology. It consists of placing the implant at the socket region 21 days after extraction. Within this period, the body manages to eliminate all infection and allows contact of the implant surface with a rich proliferating bone tissue. The three cases here presented demonstrate the long-term success of this technique.

The principles applied to this technique are based on studies that demonstrate that bone granulation tissue contains great quantity of osteogenic cells (12, 14-17) in several degrees of differentiation, and the healing socket contains a great number of undifferentiated cells, presenting greater regenerative potential compared to mature osteoblasts (12, 17). Bone granulation cells present proliferative characteristics compatible with osteoblasts, with slower growth rate compared to gingival fibroblasts, and are identified as osteoprogenitor cells (18), participating in bone repair in the period from 21 to 25 days after extraction.

Most studies demonstrate that immediate and early implants present similar success rates as late implants (19, 20), indicating that the present technique may achieve similar success rates as reported in the literature for other techniques of implant placement in fresh sockets. The advantages described for placement of Types 1, 2 and 3 (immediate, early and early-delayed) implants (20-26) are also applicable to the technique of implant placement in bone granulation tissue, including the reduced treatment time and number of surgical procedures, higher bone availability for primary anchorage and ideal implant positioning, better interarch relationship, optimized esthetics of soft tissues and greater patient satisfaction. Immediate implants may present greater risk of infection and associated failures in case of socket infection (27), corroborating the main indication of the present technique, which comprises implant placement at a later moment, yet still early, to assure complete decontamination and avoid a possible late infection. Other disadvantages reported in the literature associated with immediate implants, such as presence of gaps between the implant surface and the socket wall and the need to raise flaps for primary wound closure in cases of two-stage implants (27), are also well managed by the present technique. After 21 days of healing process, soft tissue availability allows total wound closure, and the bone 'gaps' are filled with autogenous material already present.

FIG. 8 Radiographic image after prosthetic rehabilitation, 6 months after implant placement with the bone granulation tissue technique (A). After 4 months, a new crown was made due to a fracture of the previous one (B). Five-year follow-up after implant placement, indicating the maintenance of surrounding bone (C).
in the extraction socket, which avoids the gaps between bone and implant surfaces and also provides a graft full of undifferentiated cells, with greater regenerative potential compared to mature osteoblasts. During surgery for implant placement, it is common to observe resorption of the socket bone walls due to the disease process itself, or even as a result of the surgical technique for extraction of the affected tooth, which may be overcome by implant placement in bone granulation tissue, while maintaining the advantages described for immediate implant placement. Regarding these problems, some observations from the literature are necessary to better understand the indication and dynamics of the present new technique.

The initial stages of socket healing are characterized by dimensional alterations (28), with osteoclastic activity on the buccal and lingual bone crests, leading several authors to indicate the immediate implant placement in an attempt to maintain the bone plates (29, 30). However, despite maintaining the bone architecture in general, the presence of an implant does not completely prevent bone remodeling after extraction, especially concerning the buccal plate (23, 25). According to the above mentioned biological process, placement of implants Types 1 and 2 (immediate and early implants) might cause esthetic failures after alveolar healing; since the degree of bone remodeling is unpredictable, unfavorable esthetic outcomes, especially in the anterior maxillary region, might occur due to undesirable implant exposure (27).

Once again, the present technique might minimize such inadequate outcomes, since the implant is placed after the period of greater dimensional alteration, which enhances the predictability concerning its placement to avoid the exposure of implant threads.

CONCLUSION

The follow-up of the case series presented show that the proposed treatment provided clinical success, and the presence of bone granulation tissue surrounding the implant surface assured both osseointegration and esthetic harmony of prosthetic reconstructions, indicating that this technique is a viable option within the dental implant armamentarium. However, further studies are necessary to better understand the biological factors involved in the technique, especially phenomena related to a possible modulation of bone resorption after extraction and formation of vital bone in shorter time.

Conflict of interests
The authors declare no financial and non-financial competing interests.

Consent
Written informed consent was obtained from the patient for publication of this case report and accompanying images.

Funding
The authors declare that they received no funding.

REFERENCES

